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RESUMEN

Introduccion: La enfermedad renal crénica (ERC) representa una carga para la salud
mundial, con un rango estimado de 5 a 10 millones de muertes anuales a nivel mundial.
El objetivo de esta investigacion es identificar, evaluar y resumir los hallazgos de los
modelos de prediccion utilizados para determinar la progresion de la ERC y sus
principales caracteristicas.

Método: Se desarrolld una revision sistematica que sigue las directrices PRISMA y se
adhiere a las metodologias propuestas por Kitchenham la que permite identificar y
mapear la evidencia existente e investigar y determinar las lagunas de conocimiento
en torno al tema y sigue un enfoque estandarizado para buscar, filtrar e informar

articulos.
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Resultados: La busqueda inicial arrojé un total de 429 articulos en Medline, Crochane
y Scopus, se eliminaron 23 duplicados, 321 fueron excluidos segun los criterios
preestablecidos. Se evalué la elegibilidad de texto completo de 85 articulos y
posteriormente se mantuvieron 37 articulos que se incluyeron en la revisién cualitativa
final.

Discusion: En general utilizan variables clinicas como creatinina sérica, tasa de
filtracion glomerular estimada (eTFG), edad, peso, comorbilidades y medicacion,
integradas mediante técnicas de aprendizaje supervisado, regresién de riesgos
proporcionales de Cox, regresion logistica y redes neuronales artificiales.
Conclusiones: La regresion de Cox es el modelo predominante para predecir la
progresion de la ERC. Solo un pequefio numero de estudios utiliz6 modelos de
aprendizaje automatico, IA u otras herramientas. También se identificaron disimiles
métodos para validar el modelo, aunque el que se utilizé con mayor frecuencia fue la
curva ROC.

ABSTRACT

Introduction: Chronic kidney disease (CKD) represents a global health burden, with an
estimated 5 to 10 million deaths annually worldwide. The aim of this research is to
identify, evaluate, and summarize the findings of prediction models used to determine
the progression of CKD and its main characteristics.

Method: A systematic review was conducted following the PRISMA guidelines and
adhering to the methodologies proposed by Kitchenham. This approach allows for the
identification and mapping of existing evidence, the investigation of knowledge gaps,
and the use of a standardized approach for searching, filtering, and reporting articles.
Results: The initial search yielded a total of 429 articles in Medline, Cochrane, and
Scopus. Twenty-three duplicates were removed, and 321 articles were excluded based
on predefined criteria. The full text of 85 articles was assessed for eligibility, and 37
articles were ultimately included in the final qualitative review.

Discussion: These models generally use clinical variables such as serum creatinine,

estimated glomerular filtration rate (eGFR), age, weight, comorbidities, and
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medications, integrated using supervised learning techniques, Cox proportional
hazards regression, logistic regression, and artificial neural networks.

Conclusions: Cox regression is the predominant model for predicting CKD progression.
Only a small number of studies used machine learning, Al, or other tools. Various
methods for model validation were identified, although the ROC curve was the most

frequently used.

Recibido: 12/10/2025

Aprobado: 16/10/2025

Introduccion

La enfermedad renal crénica (ERC) representa una carga para la salud mundial, con un
estimado de 5 a 10 millones de muertes anuales a nivel mundial debido a esta
enfermedad.” ? A partir de las estadisticas internacionales se pronostica como la
quinta causa principal de muerte a nivel mundial para el afio 2040.34 La ERC se
clasifica en cinco etapas progresivas y su progresion a menudo conduce a multiples
complicaciones hasta alcanzar la etapa cinco o terminal de la enfermedad.® ¢ A pesar
de haberse identificado los factores de riesgo asociados con la aparicion de la ERC,
persisten lagunas en los métodos para predecir el riesgo de progresion y en las

intervenciones para frenarla.”?

Los modelos predictivos de progresion de la ERC han evolucionado a lo largo de los
afos, en consonancia con la comprension de la fisiopatologia de la enfermedad y el
uso de datos genémicos, protedmicos y metoboldomicos para mejorar la prediccion. La
integracién de técnicas avanzadas de inteligencia artificial (IA) y aprendizaje

automatico ha permitido superar las limitaciones de los métodos tradicionales y
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ofrecen precisiones diagndsticas superiores al 90% en diversos estudios.’®'2 Sin
embargo su usabilidad actual es limitada y existen barreras metodoldgicas y de

validacion externa que limita su aplicabilidad y generalizacion.

Existen diferentes tipos de modelos predictivos empleados en la ERC, podemos
clasificarlos en modelos estadisticos tradicionales, modelos clinicos multivariables y

modelos de inteligencia artificial/aprendizaje automatico.
Modelos estadisticos tradicionales

« Kidney Failure Risk Equation (KFRE): Modelo ampliamente validado que utiliza
variables como edad, tasa de filtracién glomerular estimada (TFGe), albuminuria y
sexo para predecir el riesgo de progresion a falla renal en 2 y 5 afios. Ha sido

recalibrado para distintas poblaciones, mejorando su precision.318

* Regresion logistica multiple: Utiliza factores de riesgo como enfermedades
uroldgicas, hipertension arterial, hiperuricemia y uso de nefrotéxicos para calcular
la probabilidad de desarrollar ERC. Permite identificar combinaciones de factores

con alto riesgo predictivo.®

* Modelos de regresion lineal: Empleados para predecir la progresion de la funcion
renal a partir de variables continuas como creatinina, edad y presion arterial,

aunque con menor sofisticacion que los modelos multivariables modernos.’”~18

Modelos clinicos multivariables

* Modelo clinico con factores de riesgo ampliados: Incluye enfermedades
uroldgicas, hipertension arterial, hiperuricemia y uso de nefrotdxicos, logrando una
probabilidad predictiva de hasta 99,9% cuando se presentan todos los factores.’®

* Modelos con variables bioquimicas y demograficas: Incorporan datos como edad,
sexo, niveles de calcio, fésforo, bicarbonato y albimina junto con la TFGe y la
relacion albumina/creatinina, para estimar el riesgo de progresion a insuficiencia

renal.19-20
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» Modelos de cambio de estadio renal: Predicen la transicion entre diferentes
estadios de ERC (por ejemplo, de estadio 3 a 4) usando variables clinicas, de

laboratorio y antecedentes médicos.’%?!

Modelos de inteligencia artificial y aprendizaje automatico

« Bosque aleatorio (Random Forest): Algoritmo de aprendizaje automatico que ha
demostrado una precision diagnéstica de hasta 99,75% en la predicciéon de la

progresion de la ERC utilizando multiples variables clinicas y bioquimicas.?22*

 Redes neuronales artificiales: Utilizadas para predecir eventos clinicos
intradialiticos y progresion de la ERC, alcanzando un poder predictivo del 96% y un

area bajo la curva del estadistico C de 99,3% en estudios prospectivos.??%°

» XGBoost: Algoritmo de boosting que ha mostrado una exactitud superior al 90% en
la prediccion de desarrollo de ERC terminal, superando a otros modelos en

estudios comparativos.3°

El desarrollo continuo de estos modelos predictivos representa un paradigma
transformador para la Nefrologia, combina precision analitica con aplicabilidad

clinica.?3

El objetivo de esta investigacion es identificar, evaluar y resumir los hallazgos de los
modelos de prediccion utilizados para determinar la progresion de la ERC y sus

principales caracteristicas.

Métodos
Se desarroll6 una revision sistematica que sigue las directrices PRISMA3' y se adhiere
a las metodologias propuestas por Kitchenham?3? la que permite identificar y mapear
la evidencia existente e investigar y determinar las lagunas de conocimiento en torno

al tema y sigue un enfoque estandarizado para buscar, filtrar e informar articulos.33
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Para el desarrollo de esta investigacion seguimos la metodologia utilizada por Lim DKE
y colaboradores en la revisién exploratoria que realizaron sobre los modelos de
prediccion utilizados en la progresion de la enfermedad renal crénica.®* La revision
incluyé estudios de los ultimos 12 afios que desarrollaron o utilizaron algun tipo de
modelo predictivo para predecir la progresién de la ERC hacia una etapa mas grave de
la enfermedad. Los articulos incluidos se publicaron en revistas con revisién por pares
de diferentes paises, en inglés, portugués o espafol, entre el 1 de enero de 2011 y el
30 de junio de 2025. Se seleccionaron tres bases de datos electronicas: Medline,
Crochane y Scoping Review, por sus publicaciones bibliograficas revisadas por pares

que abarcan una amplia gama de ciencias de la salud y atencién médica.

Para el desarrollo de la estrategia de busqueda, se tomaron cuatro conceptos
principales: enfermedad renal; progresion de la enfermedad; técnicas; resultados. La
estrategia de busqueda inicial se desarrollé para su uso en Medline y posteriormente
se adaptd para las demas bases de datos. Las palabras clave y los subtitulos se
modificaron para reflejar los términos de busqueda utilizados en cada base de datos

con el uso de operadores booleanos. Los pasos utilizados en Medline son los

siguientes:

1. Enfermedad renal crénica o CKD enfermedad renal o insuficiencia renal

2. Progresion enfermedad renal crénica

3. (102)

4. Aprendizaje profundo o aprendizaje automatico o inteligencia artificial o

estadistica o algoritmos o modelo de prediccion

5. Big Data o modelos de prediccion estadistica
6. (405)
7. Enfermedad renal terminal o ESRD o Trasplante

8. (1,2,4y7)
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El primer concepto clave para la enfermedad renal incluy6 palabras clave y términos
MeSH utilizados en los pasos 1y 2 para capturar diferentes tipos de enfermedades
renales crénicas, como nefropatias diabéticas o enfermedades similares. El tipo de
modelo utilizado fue amplio e incluy6 algoritmos estadisticos o de aprendizaje
automatico (ML) para predecir la progresién de la ERC. El estudio examiné modelos
de prediccion para la progresion de la ERC, en lugar de modelos que predijeran la

apariciéon de la ERC.

Todos los articulos se exportaron a Rayyan, aplicacién de inteligencia artificial a partir
de la cual se identificaron los estudios relevantes mediante palabras clave
contextuales y se eliminaron los articulos duplicados. Dos revisores independientes
realizaron la revision de titulos y resumenes aplicando criterios de inclusion y
exclusion. No se impusieron restricciones en cuanto al tipo de modelo predictivo
desarrollado, la poblacion de interés, la fuente de los registros de datos de salud, las
variables predictivas utilizadas ni un resultado especifico. En caso de desacuerdo
sobre la exclusion de articulos, este se resolvié mediante una discusion entre los dos

revisores; en un caso se designo a un tercer revisor para su evaluacion.
Criterios de exclusion durante la revision del titulo y el resumen

» Estudios en animales

* No estaba en inglés, portugués o espanol

» El estudio no se centro principalmente en la progresion de la ERC.

« El articulo era un comentario, una ponencia de congreso, un editorial, un articulo
de opinién o un resumen suplementario.

» El estudio no considerd determinar la progresion de la ERC a partir de los registros
de datos.

« Estudio que analiz6 factores de riesgo, marcadores especificos y estudios de caso.

« Estudios de intervencion.
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Extraccion de datos y evaluacion de la calidad

La informacién extraida consistié en el titulo del articulo, el autor(es), el ano de
publicacién, el aio del periodo de estudio, las ubicaciones del estudio y el tamano de
la poblacién, el disefio del estudio (retrospectivo o prospectivo), los resultados
previstos, el tipo de modelo de prediccidn, los predictores del modelo, la evaluacién de
la validacién, las limitaciones y las implicaciones. Se contact6 con los autores
correspondientes por correo electrénico si el texto completo no estaba disponible y se

excluyo el estudio donde no fue posible obtenerlo.

Posteriormente, se implementd un proceso de dos pasos para la selecciéon de los
articulos. El primer paso consistié en evaluar titulos, resumenes, palabras clave,
introducciones y conclusiones para evaluar su relevancia con el tema de investigacion.
Esto resulté en la exclusion de articulos por duplicacién, limitaciones linglisticas,
publicaciones repetidas en diferentes bases de datos y divergencias con el tema. El
proceso completo seilustra en la figura 1. Los resultados fueron presentados en tablas

y graficos para su mejor analisis e interpretacion.
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Articulos identificados de:
Medline (n = 316)

Crochane: (n=100) ) . Duplicados eliminados:
IO | (n=23)

Scopus (n=13)
Total (n = 429)

Identificacion

v

Registros revisados: (n = 406) Registros excluidos: (n = 321)

\ 4

Cribado

Informes buscados para su S Informes no recuperados: (n = 47)
recuperacion: (n = 85)

v

Inf s > Informes excluidos después de
nformes evaluados para

elegibilidad: (n = 48) la revisién del texto: (n = 8)

Elegibilidad

v

Informes incluidos (n = 30) de:
Medline (n = 25)

Crochane (n = 3)

Incluidos

Scopus (n=2)

Fig. 1. Identificacion de los estudios a través de bases de datos y registros.

Desarrollo

La busqueda inicial arrojé un total combinado de 429 articulos en Medline, Crochane
y Scopus, de los cuales se eliminaron 23 duplicados. Se examinaron 406 articulos por
titulo y resumen, de los cuales 321 fueron excluidos segun los criterios establecidos
para la investigacion. Se evalud la elegibilidad de texto completo de 85 articulos segun
los criterios de inclusion, y posteriormente se mantuvieron 37 articulos que se
incluyeron en la revisién cualitativa final. La tabla 1 resume los articulos finales

incluidos en la revision de texto completo.

Tabla 1. Estudios excluidos

Criterios de exclusion No
Estudios en animales 13
No estaba en inglés, portugués o espafiol 6
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El estudio no se centro principalmente en la progresion de la ERC. 88

El articulo era un comentario, una ponencia de congreso, un editorial, un articulo de opinién o un 11
resumen suplementario.

El estudio no consider6 determinar la progresion de la ERC a partir de los registros de datos. 29
Estudio que analizé factores de riesgo, marcadores especificos y estudios de caso. 123
Estudios de intervencion. 51

Total 321

Poblacion del estudio: El estudio mas pequefo3® conté con 157 participantes y el mas
grande incluyé mas de 440 mil registros de pacientes.3® Las poblaciones de estudio
incluidas procedian de Estados Unidos®/2 representados por siete investigaciones,
China***’ y Canada“*®-52 cinco estudios cada uno, Japon®3-° con cuatro, Corea®’->8 con
dos y Alemania®®, Francia®’, Reino Unido®', Iran®2, Rumania® y Sudafrica®, con uno
respectivamente. Utilizaron registros de datos procedentes de todos los niveles de
atencion y de diferentes tipos de instituciones, desde clinicas, hospitales, institutos,
grandes centros de investigacion y bases de datos vinculadas nacionales. De los 30

estudios, 13 fueron retrospectivos y 7 prospectivos.

Modelo de prediccion utilizado: en 16 investigaciones se implementé la regresién de
riesgos proporcionales de Cox, modelo analisis de supervivencia que fue utilizado para
estimar el riesgo de progresar a ERC. Siete estudios utilizaron métodos de aprendizaje
automatico (AA) y uno comparé el rendimiento entre varias técnicas de AA. Un estudio
desarroll6 un modelo mediante regresion de Bosque Aleatorio y otro implementé un
modelo de enfermedad a enfermedad, aprendiendo primero la Clasificacién
Internacional de Enfermedades y luego agrupando los datos en grupos considerando
las variables dentro del conjunto de datos. Un estudio también desarroll6 un modelo
estructural marginal multiestado (MS-MSM) que considera un efecto estimado de las
variables dependientes del tiempo sobre el resultado predicho. Otros algoritmos de
aprendizaje automatico (ML) probados incluyen redes neuronales, arboles de decisién,
randomforest, XGBoost, Gaussian Naive Bayes y regresion logistica. Tres estudios

realizaron una evaluacién de la Ecuacién de Riesgo de Insuficiencia Renal (ERFR) y
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otros tres estudios desarrollaron su propio algoritmo de puntuacién unico para

predecir la enfermedad renal en etapa terminal.

Fang Zhou y colaboradores*' examinaron si el uso de un modelo de incrustacion de
baja dimensién enfermedad2enfermedad (D2D) aprendido de registros médicos
electrénicos (EHR) a gran escala podria agrupar las causas de las enfermedades
renales y las comorbilidades y mejorar aun mas la prediccion de la progresion de la
ERC a la Enfermedad Renal Terminal en comparacion con los factores de riesgo
tradicionales. Aplicaron ademas, un modelo de regresion logistica regularizada y un
modelo de riesgos proporcionales de Cox respectivamente, y compararon las

precisiones con las obtenidas por cuatro modelos alternativos.

Esra Kiiriim y colaboradores#? desarrollaron un nuevo modelo conjunto trivariado para
estudiar los factores de riesgo asociados con los resultados interdependientes de la
funcién renal (medida por la tasa de filtracién glomerular estimada longitudinalmente),
los eventos cardiovasculares recurrentes y el evento terminal. Propusieron una
estimacion e inferencia eficientes dentro de un marco bayesiano utilizando el método
Monte Carlo de Cadenas de Markov y P-splines bayesianos para las funciones de

riesgo.

Navdeep Tangri y colaboradores®? emplearon en Canada. un modelo de aprendizaje
automatico de Klinrisk. El modelo de aprendizaje automatico fue el modelo de bosque
aleatorio, utilizando el paquete R Fast Unified Random Forest for Survival, Regression
and Classification, y el bosque de supervivencia con datos censurados por la derecha
(randomForestSRC).

Jamshid Norouzi y colaboradores®? propusieron un sistema de inferencia neurodifusa
adaptativa (ANFIS) para predecir la duracién de la insuficiencia renal asociada a la
ERC, basandose en datos clinicos reales. Utilizaron el valor umbral de 15
cc/kg/min/1,73 m? de tasa de filtraciéon glomerular (TFG) como marcador de
insuficiencia renal y el modelo ANFIS tipo Takagi-Sugeno para predecir los valores de
TFG.
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Erik Dovgan y colaboradores®® en Taiwan, China evaluaron 10 algoritmos de

aprendizaje automatico (ML) implementados en los paquetes de Python Scikit-learn®®
y XGBboost®’:

1.

El algoritmo de arbol de decisién implementa una estructura de arbol, donde cada
nodo interno representa una condicion para una caracteristica, cada rama
representa el cumplimiento de la condicién del nodo y cada nodo terminal
determina la clase asignada a las instancias que cumplieron las condiciones de los
nodos internos en la ruta desde el nodo raiz hasta el nodo terminal®®

El algoritmo de arboles de decision ensacado aplica un conjunto de arboles de
decision, donde cada arbol de decisién se construye unicamente con un
subconjunto aleatorio de datos. La clasificacion final se determina mediante el
mecanismo de votacion; es decir, la prediccion mas votada es la prediccion final®®
Random Forest mejora los arboles de decision Bagging con seleccion aleatoria de
caracteristicas. Mas precisamente, al particionar un nodo, se selecciona
aleatoriamente un subconjunto de caracteristicas y solo estas se consideran
durante la particion®°

Extreme Gradient Boosting (XGBoost) es una mejora de Random Forest, donde los
modelos se construyen secuencialmente para minimizar los errores y maximizar la
influencia de los mejores modelos®’

El algoritmo de maquinas de vectores de soporte (SVM) es un clasificador binario
que mapea los datos de entrada en un espacio de caracteristicas de muy alta
dimension con una transformacién no lineal (también conocida como el truco del
kernel) y aplica una superficie de decision lineal en el espacio de caracteristicas
para discriminar entre las dos clases’®

El Descendente de Gradiente Simple (SGD) es un algoritmo que, en la configuracién
seleccionada, entrena el clasificador lineal SVM”’

El clasificador de Vecinos Mas Préximos encuentra los vecinos mas cercanos en

el espacio de caracteristicas mediante la distancia euclidiana y aplica un voto
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mayoritario sobre las clases de estos vecinos mas cercanos para determinar la

clase’?

8. El método Bayesiano Naive Gaussiano aplica el teorema de Bayes con el supuesto
de independencia condicional entre cada par de caracteristicas dado el valor de la

clase”

9. La Regresidn Logistica aplica la funcion logistica para predecir la probabilidad de
la clase predeterminada en un problema de dos clases. Es un modelo lineal, ya que
las caracteristicas se suman linealmente mediante ponderaciones; sin embargo,
las predicciones se transforman utilizando una funcién logistica no lineal’*

10.ElI modelo de red neuronal representa una mejora (significativa) del método de
regresion logistica. De forma similar a la regresion logistica, combina linealmente
las caracteristicas y aplica una transformacién (no lineal) al resultado. Esta se
mejora apilando varias de estas transformaciones en capas, obteniendo asi varias
capas ocultas (ademas de la entrada, es decir, la capa de caracteristicas, y la salida,
es decir, la capa de clase), donde cada capa representa un nivel diferente de

abstraccién’®

Variables significativas en el modelo: los predictores comunes utilizados en los
estudios incluyeron edad, sexo, eGFR, cociente albumina-creatinina urinaria (CA),
creatinina sérica (CrS), diabetes, enfermedad cardiovascular, indice de masa corporal
(IMC) e hipertensién arterial. En cada modelo predictivo se incorporaron diferentes
combinaciones de variables y definiciones ligeramente diferentes para algunas
variables, como la hipertension arterial; la formula de la TFGe tampoco fue consistente

entre los estudios.

Evaluacion de la validacién: de los treinta articulos finalmente evaluados, 23 (76,7 %)
informaron sobre el rendimiento y la validacién de sus respectivos modelos
predictivos, siete estudios para el 23,3 % no realizaron este proceso. De los 23 estudios
que evaluaron el rendimiento, 19 lo hicieron midiendo el drea bajo la curva (AUC).
También se emplearon diversas medidas alternativas, incluyendo el error cuadratico

medio, el error absoluto medio, el error cuadratico medio normalizado, el estadistico
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x2 de Nam y D’Agostino, los valores predictivos positivos, los valores predictivos
negativos y el método bootstrap.

Los modelos de prediccion en la Enfermedad Renal Crénica (ERC) constituyen
herramientas fundamentales para anticipar la progresion y mortalidad asociadas a
esta patologia, su impacto clinico es variable, ya que a pesar de ayudar a estratificar el
riesgo de los pacientes, detectar tempranamente la progresion hacia estadios
avanzados y mejorar la sobrevida mediante intervenciones oportunas, su

implementacién aun es limitada.

En general utilizaron variables clinicas como creatinina sérica, tasa de filtracion
glomerular estimada (eTFG), edad, peso, comorbilidades y medicacién, integradas
mediante técnicas de aprendizaje supervisado, regresién de riesgos proporcionales de

Cox, regresion logistica y redes neuronales artificiales.

Estos modelos permiten clasificar el riesgo en diferentes categorias, como progresion
rapida, cambio de estadio renal y riesgo de mortalidad, con métricas de alta precision,
sensibilidad y especificidad, lo que facilita la toma de decisiones clinicas tempranas y

personalizadas para pacientes con ERC.

El empleo de la inteligencia artificial (IA) y las redes neuronales ha incrementado
significativamente la precision en la prediccion, superando a métodos tradicionales y
abriendo nuevas posibilidades para el monitoreo en pacientes en hemodialisis. Las
tendencias actuales estan marcadas por la aplicacion avanzada de IA, Big Data y el
aprendizaje automatico, que permiten procesar grandes volumenes de datos clinicos
y detectar patrones complejos que escapan al analisis convencional. Se desarrollan
modelos con menor numero de variables para facilitar su uso clinico y adaptarse a

poblaciones especificas.

Los avances recientes apuntan a la validacion externa y actualizacion continua de
modelos predictivos para asegurar su aplicabilidad en diferentes contextos
geograficos y demograficos. Ademas, se promueve la incorporacion de

biomarcadores, parametros genémicos y uso de tecnologias digitales para mejorar la
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precision diagndstica y la prediccion en etapas tempranas. Entre los principales
desafios se encuentra la calibracion adecuada para diferentes poblaciones y la
integracion con sistemas de salud digitalizados que permitan un seguimiento

automatizado y eficiente.

Muchos modelos predictivos fallan al aplicarlos fuera de su cohorte original
principalmente debido a la variabilidad en los datos y caracteristicas poblacionales
entre la cohorte donde se desarrollaron y la nueva poblacién donde se aplican, otro
factor clave es el sobreajuste del modelo a la cohorte original, donde el modelo
aprende detalles y ruido especificos de los datos de entrenamiento que no se
generalizan bien a los datos nuevos. También las diferencias en el espectro clinico del
paciente, como la prevalencia de comorbilidades, severidad de la enfermedad o
caracteristicas sociodemograficas, influyen en la falla de un modelo fuera de su
cohorte original. Cuando un modelo se aplica a una poblacién con un espectro
diferente de riesgo o presentaciones clinicas, puede no captar adecuadamente la

heterogeneidad de la poblacion, limitando su utilidad practica.

De igual forma, la variabilidad en el entorno de practica clinica y los tratamientos
disponibles puede hacer que los efectos prondsticos y las relaciones identificadas en
la cohorte original se modifiquen o desaparezcan en nuevas cohortes, afectando la
validez del modelo. Cambios en las practicas médicas, tecnologia diagndstica y
protocolos de manejo pueden influir en los desenlaces y deben considerarse para
garantizar la aplicabilidad del modelo en contextos diferente, por ultimo y no menos
importante debe considerarse la calidad y cantidad de datos con los que se alimenta
el modelo en la nueva cohorte pueden ser insuficientes o discordantes con las
variables usadas para entrenar el modelo. Datos incompletos, mal registrados o con
diferentes formatos pueden deteriorar el rendimiento predictivo. Por ello, la
construccion de modelos robustos exige conjunto de datos representativos,
homogéneos y con adecuada definicién y estandarizacion de variables, junto a

procesos rigurosos de validacion y recalibracion en nuevas poblaciones.
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Conclusiones

La revision destaca que la regresion de Cox es el modelo predominante para predecir
la progresién de la ERC. Solo un pequefio numero de estudios utiliz6 modelos de
aprendizaje automatico, IA u otras herramientas. También se identificaron disimiles
métodos para validar el modelo, aunque el que se utilizé con mayor frecuencia fue la
curva ROC.

Aun no es posible definir una guia estandarizada para el desarrollo y validacion de
modelos predictivos para la progresién en la ERC, dada la variabilidad de herramientas

y técnicas que pueden ser utilizadas.
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